skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alveshere, Brandon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Disturbances from insect pests threaten ecologically and economically important goods and services supplied by forests, including wood production and carbon sequestration. We highlight the factors that influence these services’resistance, a term quantifying the initial response to disturbance. Insects inflict damage through a range of mechanisms, prompting distinct plant physiological responses that scale to influence ecosystem processes and, with time, goods and services. The degree and timing of tree mortality and defoliation affect the amount of residual vegetation available to support compensatory wood production and influence carbon sequestration by changing rates of detritus‐fueled decomposition. Compounding, or sequential, insect attacks may prime a forest for additional disturbance, further eroding wood production and carbon sequestration. Forest management practices that promote biological and structural diversity, and augment or retain limiting biological and nutrient resources, may buffer against the effects of insect pests on wood production and carbon sequestration. 
    more » « less
    Free, publicly-accessible full text available June 16, 2026
  3. Abstract Here we present aboveground biomass (AGB) estimates from individual tree diameters scaled to whole‐tree biomass estimates using generalized allometric equations for 35 National Ecological Observatory Network (NEON) sites within the United States and Puerto Rico. These data are in both a standalone data file made publicly available via Figshare and as an R data package (NEONForestAGB) that allows for direct import of data into the R statistical computing environment. AGB is an Essential Climate Variable (ECV), yet biomass estimation from large forest inventory data can be cumbersome. Here we seek to provide a useful data set for community use from NEON data. The data set includes 92,281 unique individuals of 478 different species from 1,216 terrestrial observation plots for 360,570 biomass estimates between the years 2014 and 2023. 
    more » « less
  4. Canopy defoliation is an important source of disturbance in forest ecosystems that has rarely been represented in large-scale manipulation experiments. Scalable crown to canopy level experimental defoliation is needed to disentangle the effects of variable intensity, timing, and frequency on forest structure, function, and mortality. We present a novel pressure-washing-based defoliation method that can be implemented at the canopy-scale, throughout the canopy volume, targeted to individual leaves or trees, and completed within a timeframe of hours or days. Pressure washing proved successful at producing consistent leaf-level and whole-canopy defoliation, with 10%–20% reduction in leaf area index and consistent leaf surface area removal across branches and species. This method allows for stand-scale experimentation on defoliation disturbance in forested ecosystems and has the potential for broad application. Studies utilizing this standardized method could promote mechanistic understanding of defoliation effects on ecosystem structure and function and development of synthetic understanding across forest types, ecoregions, and defoliation sources. 
    more » « less
  5. The three‐dimensional (3D) physical aspects of ecosystems are intrinsically linked to ecological processes. Here, we describe structural diversity as the volumetric capacity, physical arrangement, and identity/traits of biotic components in an ecosystem. Despite being recognized in earlier ecological studies, structural diversity has been largely overlooked due to an absence of not only a theoretical foundation but also effective measurement tools. We present a framework for conceptualizing structural diversity and suggest how to facilitate its broader incorporation into ecological theory and practice. We also discuss how the interplay of genetic and environmental factors underpin structural diversity, allowing for a potentially unique synthetic approach to explain ecosystem function. A practical approach is then proposed in which scientists can test the ecological role of structural diversity at biotic–environmental interfaces, along with examples of structural diversity research and future directions for integrating structural diversity into ecological theory and management across scales. 
    more » « less